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Several means for visualizing large-scale vortex structure in a turbulent mixing layer 
are proposed. Most of the observations are recorded along the low-speed side of the 
mixing layer, external to the rotational portion of the flow. Conventional correlation 
measurements in both the streamwise and spanwise directions indicate that the 
vortex structure becomes independent of the downstream coordinate in a non- 
dimensional distance of order Axlei = 300-400, where A = AU/28 is the speed ratio 
and Bi is the initial integral thickness. Simultaneous hot-wire measurements at 12 
spanwise positions allow computer reconstruction of the velocity field as a function 
of span and time. These visualizations show the vortex structures to be primarily 
aligned across the span of the flow, but to contain irregularities. Spanwise correlation 
lengths are of the order of 3-56,,, (6, is the local vorticity thickness). However, the 
large vortices typically have lengths of order 206, when the irregularities along the 
span are ignored. 

1. Introduction 
Attention is focused on the large spanwise vortices in a mixing layer that were first 

described by Brown & Roshko (1971,1974) and Winant & Browand (1974), and which 
have since been observed and studied in numerous investigations. It is plausible to 
assume that these vortices - so prominent in visualizations - must also be important 
dynamically. There is much accumulating evidence to demonstrate that the vortices 
are most energetic themselves, and, during interactions, control the energy transfer 
from the two streams to the turbulence (these points have recently been discussed 
by Browand & Ho 1983). The dramatic response of the mixing layer to the application 
of a small spatially coherent perturbation can only be understood with recourse to 
the presence and enhancement of spanwise vortex structure (cf. Hussain & Zaman 
1981 ; Wygnanski & Oster 1982; Ho t Huang 1982). 

The present study attempts to define the geometry of the large vortices. The flow 
is allowed to develop from a laminar boundary layer, or from an intentionally tripped 
turbulent boundary layer, but no other forcing is provided. In both cases the 
downstream structure becomes indistinguishable. The Reynolds numbers of the flow 
are large: AUS,,,/u varies from about 3000 at the origin of the mixing layer to 
1.5-2.0 x lo6 at a distance of one metre downstream. The latter value corresponds 
to length Reynolds numbers A U x / u  of 1.2-1.5 x lo6. The spanwise extent of the flow 
is also made large intentionally - so that spanwise features will not be influenced by 

t Permanent address: Department of Mechanical Engineering, Washington State University, 
Pullman, WA 99164-2920. 
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walls. Measured in units of local vorticity thickness 8, = A,U/(d;ll/dy)max, the span 
is never less than 76, a t  the farthest downstream station. 

The hot-wire arrays, placed on the low-speed edge of the flow, do not resolve 
features that have a spanwise scale smaller than the local mixing-layer thickness. 
Again, our interest is the three-dimensionality of the spanwise vortices, which are 
generally many mixing-layer thicknessea in length. Of course three-dimensionality 
extends to much smaller scales. There have been a number of recent papers that 
explore this smaller structure in detail : for example, Konrad (1976), Breidenthal 
(1981), Bernal et al. (1979), Bernal (1981) and Jimenez, Martinez-Val & Rebollo 
(1979). Wood & Bradshaw (1982) propose a typical vortex structure which bears 
considerable resemblance to  the streamwise vortices observed and discussed earlier 
by Bernal. The presence of these features is not inconsistent with our present 
observations - they simply represent smaller-scale topography. 

2. Experimental apparatus; techniques 
2.1. Wind tunnel 

A sketch of the wind tunnel is shown in figure 1 .  Flow properties have been carefully 
described in Browand & Latigo (1979). A series of cloth meshes (polyester silk-screen 
material) were added to  the low-speed (upper) half of the stilling-section inlet to 
provide additional resistance, resulting in speed ratios h = AU/2n = 0.41,0.56,0.65 
and 0.81. The flow was uniform across the span to within 0.25% of the maximum 
velocity in either stream, and the turbulence level u’/AU in the plane of the plate 
trailing edge was 0.3 yo in the low-speed stream and less than 0.1 yo in the high-speed 
stream. The high-speed-stream velocity was typically 25 m/s, and the equivalent 
flat-plate Reynolds number a t  the splitter-plate trailing edge was about lo6 with no 
bursting observed. In  most cases the mixing layer was allowed to develop from the 
initial laminar flow. For one speed ratio, h = 0.65, the plate boundary layer was 
tripped using a cylindrical wire of diameter 1.6 mm placed 15 cm upstream of the 
trailing edge - resulting in a fully turbulent boundary layer a t  the origin of the mixing 
layer. 

2.2. Detection of structure 
Many of the results to be described utilize the longitudinal velocity fluctuations 
measured by a rake of hot wires placed on the low-speed side of the mixing layer near 
y/B = 6,  where 0 is the local integral mixing-layer thickness (see ( 1 )  in $3.1). I n  some 
cases the wires are placed along the ray y/B = 6 extending from the origin; in other 
cases the wires are placed along the span of the flow, a t  fixed x. Alignment of the 
spanwise array was accomplished by first setting the wires along a line parallel to 
the plate trailing edge with a relative accuracy f 0.1 mm using a telescope. The entire 
array, supported on an old lathe bed, was then positioned downstream using our 
measurements of local mixing-layer thickness as a guide. 

The ray y/8 = 6 was chosen as the most appropriate position to detect structure 
within the mixing layer. Here the signals are sensitive to the longitudinal fluctuation 
associated with the large vortices passing underneath, but are not contaminated by 
the small-scale features within the rotational portion of the flow. I n  practice there 
is a relatively narrow range of y/B where this technique may be successfully applied. 
Closer than y/€J = 6 the intermittent rotational bursts are unacceptable. (According 
to Wygnanski & Fiedler (1970), the intermittency at y / B  > 5 is less than 0.5 %.) 
Beyond y/B x 8 the signals are too small in amplitude to  be useful. 
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FIQURE 1. Schematic of wind tunnel. 

The longitudinal fluctuation at the edge of the mixing layer is a summation of 
contributions from all the vortices comprising the mixing layer. However, the 
contribution from the vortex passing immediately underneath (nearest vortex) is 
much larger than the contributions from neighbouring vortices. A rough estimate can 
be ohtained by considering the mixing layer as a row of two-dimensional line vortices 
(non-pairing vortices of appropriate circulation) spaced 4.38, apart. The ratio of the 
contribution from thevorteximmediately below to the contribution ofthe next-nearest 
neinhbour is then 

For y = 68 = 1.38,, this ratio is larger than 10. 
Further experimental verification that the fluctuation is a sensitive local measure- 

ment can be obtained from the signals themselves. Figure 2 shows traces taken 
simultaneously at eight downstream positions along the ray y/8 = 6. The signals are 
well above noise level, with turbulent intensities u'/AU = 0.01-0.02. Each signal 
exhibits a characteristic frequency - the local frequency of vortex passage. The 
timescale for each downstream position has been increased in proportion to the local 
mixing-layer thickness. With this scaling, the significant frequencies are in rough 
correspondence all along the mixing layer. The signal at the farthest-downstream 
station differs in timescale by a factor of almost 30, yet looks cleaner and resembles 
the initial instability more than do some of the intervening traces. Finally, figure 3 
gives autocorrelation functions computed from data at  x/8, = 1355 for three values 
of y / 8 .  The average passage period Tp is associated with the time interval to the first 
peak. It can be seen that the time interval is not sensitive to the particular value 
of y/8 near y/8 = 6. At y / 8  = 4 small-scale fluctuations reduce the degree of 
correlation, but even here there is little effect upon the computed average passage 
period. 

2.3. Digitization 
The hot-wire response was flat to a t  least 10 kHz. The hot-wire signals were first 
recorded on FM tape. Later these signals were digitized (12 bit conversion) and 
rewritten to digital tape. In some cases the F M  tapes were played at  a slower rate 
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FIQURE 2. Longitudinal velocity fluctuations at various 
downstream positions along the ray y f 0  = 6. 

to expand the timescale. Various combinations of tape speed and digitization rate 
resulted in real-time rates of 200CL10000 digitizations per second per channel. The 
signals were digitized unfiltered, since very little high-frequency content was present. 
The fluctuating voltage was defined for each hot wire by subtracting the computed 
mean value, and normalizing by the computed r.m.s. value. No calibration relating 
hot-wire fluctuation voltage to  fluctuation velocity was needed, because these two 
quantities are linearly related for small fluctuation amplitude. 

3. Results 
3.1. Mean growth of the mixing layer 

The mean thickness of the mixing layer is best determined by calculating the integral 
scale 

(1) 
00 

Ww2 = j [U,--U(Y)l [W- V2l dY. 
-a, 

Our results for various speed ratios are shown in figures ~ ( u - c ) .  Figure 4(a) contains 
the raw data - integral thickness versus downstream distance. Close to  the origin, 
the spreading rate dO/dx is about the same for all speed ratios. Farther downstream, 
the growth rates approach a linear dependence upon x, and separate such that slower 
growth rates correspond to  lower values of speed ratio A. The linear dependence upon 
x is a requirement when no other lengthscales are relevant, but the dependence upon 
h cannot be obtained from dimensional arguments. It may be understood by referring 
to the case of timewise growth. Imagine a mixing-layer sheet that is infinite in extent 
and becoming thicker with time. Neglecting viscosity, the thickness of the sheet must 
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FIQURE 3. Autocorrelation of the longitudinal-velocity fluctuation at x/O, = 1355 
for three vertical positions: (a) y/O = 8; ( b )  6; ( c )  4. 
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be linearly proportional to the velocity difference and the time, since these are the 
only parameters available : 

A pseudo-spacewise growth is obtained by replacing t by x/D. This Galilean 
transformation cannot be applied rigorously to the mixing layer growing from an 
origin in space, but the argument does predict the correct linear dependence upon 
x and suggests a linear dependence upon speed ratio : 

8( t )  - AUt. (2) 

When downstream distance is scaled by the speed ratio, the results appear as in 
figure 4 (b). Far from the origin, the data are reasonably well correlated by this scaling, 
and appear to follow the linear law. Close to the origin, there is a pronounced hump - 
first a more rapid growth, then slower growth before approaching the downstream 
growth rate from below. The lower the speed ratio, the more pronounced the hump 
appearance. 

The previous results imply that, in the initial region, another lengthscale must be 
important. We choose for this length an equivalent initial integral thickness 8,. The 
adjective equivalent is used because di is not measured directly. There is ambiguity 
in a direct measurement since the velocity profile near the origin is wake-like owing 
to the presence of boundary layers on the upper and lower surfaces of the splitter 
plate. Our initial 8, is an effective integral thickness determined by measuring the 
frequency of the initial instability. This initial instability is assumed to produce an 
initial vortex structure having a passage frequency (or wavelength) appropriate to 
the most-amplified wave predicted from the spatial-stability calculations of Monkewitz 
& Huerre (1982). The prediction can be used to infer the thickness of the basic laminar 
shear flow. An alternative interpretation is that the inverse of the initial frequency is 
a direct measure of the lengthscale of the initial vortex structure, which is the most 
important scale in the problem. The values of Bi determined in this manner are, in 
most cases, very close to the measured values of the boundary-layer momentum 
thickness on the high-speed side at  the plate trailing edge. We have therefore taken 
the initial thickness to be the mean of these two measures, with a probable error of 
only a few per cent. 

Figure 4 ( c )  shows integral thickness and downstream distance scaled with initial 
integral thickness. The uncertainty associated with the errors in 6, could move the 
data points along the diagonal lines shown in the plot. The results are consolidated 
over those of figure 4 ( b )  by this non-dimensionalization. There appears to be a 
dependence upon A near the origin which gradually disappears. All of the results relax 
to a single universal linear growth-rate curve beyond 

A X  
- w 400-500. 
6i 

Collectively the results are still well fitted by a line of slope 

d8 
dx 
- = 0.034A (4) 

in the region Ax/8, > 500, which is the value quoted earlier by Browand & Latigo 
(1979) for A = 0.695. It is equivalent to a growth rate for the vorticity thickness of 

-- dsw - 0.17A. 
dx 
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FIGURE 4. Mean downstream growth of mixing layer for various speed ratios: 0 ,  A = 0.695; 0, 
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distance scaled with speed ratio. (c) Non-dimensional presentation. 
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FIGURE 5. Strouhal number versus normalized downstream distance. Data recorded on the low-speed 
side at y/B = 6. Bars indicate estimated variance obtained from data at different spanwise locations. 
Open symbols denote tripped boundary layer. Most-amplified linear-wave estimate from Monkewitz 
t Huerre (1982). 

The differences in growth rate near the origin - as much as 60% - could easily 
account for the scatter in growth rates observed by various experimenters (cf. Brown 
& Roshko 1974). The physical reason for the more rapid initial growth is probably 
related to  a localization of the pairing process. When the initial mixing layer is 
laminar, the first pairing (or several pairings) may take place with slightly more 
organization, and therefore less spatial jitter, than those pairings that occur farther 
downstream. If the mixing layer were made turbulent initially by tripping the 
boundary layer on the plate, one might expect a disappearance of the rapid-growth 
region near the origin. This is borne out by the results for a tripped boundary layer 
at h = 0.695 (plotted as open symbols in figure 4c). In fact, the growth rate is initially 
much lower for the turbulent boundary layer, and it is concluded that the initial 
turbulence must interfere with pairing in the region near the plate (Browand & Latigo 
1979). The slopes farther downstream are close (but not identical); the dominance 
of the vortex structure is eventually established. The total thickness of the mixing 
layer depends upon different growth histories, however, and remains smaller for the 
turbulent initial condition. 

3.2. Mean vortex spacing 

Another indication that a transition to asymptotic structure occurs near 
Ax/8, z 400-500 is obtained from autocorrelations of velocity fluctuations along the 
ray y/8 = 6. Again the mean vortex-passage period Tp is defined as the time interval 
to the first peak of the autocorrelation function. These passage periods are non- 
dimensionalized with the measured vorticity thicknesses 8, and the mean speed 
to form Strouhal numbers St = 8JTp n, plotted in figure 5 for various values of speed 
ratio. The results show the considerable variation of Strouhal numbers with 
downstream distance in the region near the origin, and the much smaller variation 
farther downstream. For reference, the most-amplified wave has a Strouhal number 
close to 0.135, according to linear-stability theory (Monkewitz & Huerre 1982). The 
Strouhal numbers in the experiment begin near the linear-stability value, increase 
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FIGURE 6. Average separation of vortices aa a function of speed ratio. 
Data recorded on the low-speed side at y l 9  = 6. 

to a peak in the vicinity of hx/B, x 200-300, and finally relax slowly to intermediate 
values. The relaxation takes place at a non-dimensional distance of hx/8, w 400-500. 
The exception is the flow with turbulent initial boundary layer. There is first a 
decrease in the local Strouhal number, then a gradual relaxation to a slightly larger 
value. 

An asymptotic Strouhal number, determined by averaging values for downstream 
distances hx/8, > 600, is plotted as a function of speed ratio (insert in figure 5 ) .  There 
seems to be a slight decrease in Strouhal number with increasing speed ratio. If 
6,/TpB were measured at the same y/8 on the high-speed side (far downstream), the 
value would be approximately 0.30. This difference can be understood simply. When 
the probe is on the low-speed side, vortices that are nearer and therefore travelling 
more slowly are given greatest weight. With the probe on the high-speed side, the 
opposite is true. The average of these two values, 6,/Tpa x 0.26-0.27, would be a 
better measure of the average Strouhal number at a speed ratio of 0.65. 

The quantity Tp fl can be thought of as the spacing between vortices. Figure 6 shows 
this spacing, expressed in units of mixing-layer thickness, as a function of speed ratio. 
The spacing appears to increase with increasing speed ratio, but the increase is not 
much larger than the estimated variance in the data. Also, there is practically no 
difference in the observed passage period for laminar or turbulent initial conditions 
- at least at  A = 0.65. (The dependence of vortex spacing upon speed ratio is not 
predicted by application of a Galilean transformation, since all lengthscales must be 
proportional to AUt in accordance with (2). Therefore a ratio of lengthscales such as 
Tp D/6, would be predicted to be a constant.) The least-squares straight line shown 
in figure 6 is 

(6) 
T i 7  
6, 

= 0.54A + 4.0. 

3.3. Spanwise correlation of vortex structure 

In a previous paper (Browand & Troutt 1980) we discussed the spanwise extent of 
the vortex structure at the single speed ratio h = 0.81. The technique was to 
cross-correlate longitudinal velocity fluctuations at  two spanwise locations z and 
z + Az for various downstream positions. Figure 7 gives the maximum cross-correlation 
in coefficient form for pairs of velocities separated by Az (using a rake of 12 hot wires), 
but now for the speed ratio A = 0.56. (The maximum cross-correlations were 
computed digitally by fitting a parabola through the point a t  zero time delay and 
two points a t  small positive and negative time delays.) The correlation coefficient, 
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FIQURE 7. Spanwise correlation of longitudinal velocity fluctuation along the ray y l B  = 6 for 
many downstream positions. The speed ratio is h = 0.56. Data from many spanwise locations are 
shown. 

plotted against spanwise separation normalized by the local layer thickness, exhibits 
the sa.me behaviour as the previous result a t  higher speed ratio. Namely, the 
correlation between two points of fixed separation is initially very high. As downstream 
distance increases, this correlation drops rapidly, then begins to rise again - this time 
linearly with increase in x. Remember that 8, also increases linearly with x in this 
downstream region. When the results are displayed (figure 7)  as a function of Az/dU 
rather than Az the correlation distribution approaches an asymptotic shape and 
remains unchanged with further increases in distance. 

A similar result is obtained a t  all speed ratios investigated. Rather than plot these 
individually, figure 8 presents only the asymptotic distribution for each speed ratio. 
The result for the turbulent initial boundary layer is also shown. The correlation 
distributions are close but not quite identical. There is a residual dependence upon 
A - what might be termed fine structure. I n  figure 9 the spanwise separation Az/&, 
corresponding to 40% correlation displays a linear dependence upon A. Values for 
Ax/Oi > 600 have been averaged for each speed ratio to  produce the error bars shown. 
Combining these results with the autocorrelations presented earlier (figure 6) shows 
the large vortex structures to  be - on the average - farther apart in the streamwise 
direction and less correlated across the span as the speed ratio increases. The 
asymptotic result for the turbulent initial boundary layer lies above the laminar data, 
by an amount larger than the estimated error. The reason is that, although the 
correlation at  fixed separation is about 10 % greater for the laminar boundary-layer 
case, the local thickness of the mixing layer is considerably smaller (about 25 yo less) 
for turbulent initial conditions. Here again, the two initial conditions produce small, 
but demonstrably lasting, differences in flow structure. 
A transition point xT can be defined using the approach of the spanwise correlations 

toward their far-downstream values. First, the differences between Az/8, for 40 % 
correlation and the asymptotic values in figure 9 are plotted as a function of hx/Oi. 
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All data for hx/Bi < 300 for the various speed ratios are used in figure 10. A reasonable 
fit is obtained with the form 

(7 )  
--(-) Az Az =[?) -(&) ]exp(-$:), 

where the subscripts i and 00 refer respectively to the initial and final values. 
Excluding the two extreme points, and the points corresponding to turbulent initial 
conditions, a least-squares linear fit gives 

8, \ 8 w  a, 8, i dw cc 

(k) = 35.4, 
8, i 
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The transition distance is defined to be the point where the spanwise correlation falls 
to within 20% of the asymptotic value. Since the asymptotic correlation values 
depend upon speed ratio, the values of transition distance determined from figure 10 
will also be slightly different : 

-- Ax’ - 260-282, 
4 
A +0.41-O.81 .I 

The data are probably not accurate enough to give confidence in this weak trend. 
An estimate of the accuracy of the least-squares line suggests the simpler result 

AX 
2 = 270f 15 
8, 

independent of speed ratio. 
The sensitivity of the transition criterion to Reynolds-number variation can also 

be obtained. Figure 11 demonstrates the range of experimental Reynolds number in 
two ways, using as the lengthscale either the initial integral thickness or the local 
mixing-layer thickness at transition. The lined block shows the range of the 
transition-distance estimate - without regard to speed ratio - while the circles 
correspond to the result expressed in (10). A change of 65% in AUO,/v corresponds 

F’IWRE 10. The approach of the spanwise separation for 40 % correlation toward the asymptotic 
(limiting) value. 0,  A = 0.81; V, 0.65; V, 0.65 (turbulent boundary layer); ., 0.56; A, 0.41. 
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FIQURE 1 1. The distance xT required to achieve the asymptotic (limiting) spanwise correlation 
distribution as a function of Reynolds number. 

- at most - to an 8 % change in transition distance. Alternatively, a 25 yo change in 
local Reynolds number could (possibly) be associated with the same change. The 
Reynolds number does not seem to be an important parameter in the establishment 
of asymptotic vortex structure. However, a wider range of values would have to be 
investigated for a more definite conclusion. 

When the mixing layer originates from a turbulent boundary layer the achievement 
of asymptotic correlation follows a different path. The region of very high spanwise 
correlation near the origin is missing (figure 10). The correlation is still about 20 Yo 
larger in this initial region, and decreases slightly as downstream distance increases. 

3.4. Velocity-field visualizations 
The cross-correlation measurements are useful in describing the approach to asymp- 
totic structure, but they give little information about the instantaneous flow 
structure responsible for establishing this correlation. A better physical picture 
is obtained by displaying a sequence of instantaneous outputs from the 12 hot 
wires spaced across the span. Several such visualizations are shown isometrically in 
figure 12. The vertical coordinate is the normalized velocity fluctuation as a function 
of spanwise position Az and an equivalent downstream lengthscale tv. The sign of the 
signals has been reversed, so that a positive fluctuation peak corresponds to a vortex 
&mediately beneath. The structure is best revealed by the dark bands, which are 
the backsides of the undulations representing the passage of vortex cores. The most 
important conclusion is that virtually all the vortices can be traced continuously 
across the span of the wind tunnel - they are very long. Vortices are, however, often 
skewed or they may contain branching connections with neighbouring vortices. These 
irregularities reduce the spanwise correlation. The estimate of spanwise length 
obtained from an isocorrelation contour is a measure of the average distance between 
spanwise irregularities - not a measure of the length of the vortices themselves. 
Globally, the structure appears strongly oriented across the span. There can be no 
confusion in figure 12, for example, between the spanwise and the streamwise 
coordinate directions. Browand & Troutt (1980) termed this structure 
quasi-two-dimensional. 

The first three isometrics in figure 12 show the velocity field at  three downstream 
stations for h = 0.65: (a) near the origin, where the organization is extremely high; 
(b) near the position where the spanwise correlation has fallen to its lowest value; 
and ( c )  farther downstream, well into the asymptotic regime. The isometrics (b) and 
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FIQURE 12 (a)-(c). For caption .see opposite. 

(c) have the same spanwise extent, 66cm, and clearly show different degrees of 
correlation. The downstream position of ( b )  is 20.3 cm; that of ( c )  is 71.1 cm. A 
spanwise length equal to five local vorticity thicknesses, and a time tv = lOS,, are 
shown as appropriate dimensional scales. Isometric (a) is 2.5 cm from the origin. The 
correlation is extremely high. To improve spanwise resolution where the mixing layer 
is thin, the array was shortened to 12.7 cm. A spanwise length equal to 108, and an 
equivalent time tn = 108, are shown for scale. Figures 12 ( d )  and ( e )  compare 
asymptotic structure for the speed ratios A = 0.41 and 0.56, respectively. The 
remaining isometric (f ) corresponds to the condition of a turbulent initial boundary 
layer for A = 0.65. 

3.5. Ends counting: a measure of the irregularity of vortices 

An equivalent visualization can be obtained by passing an imaginary plane through 
the previous isometric a t  a fixed fluctuation threshold. Figure 13 shows a topographical 
map in which the darkened areas represent fluctuation above the long-time mean. 
Thus darkened areas can be associated with vortex structure, and white areas with 
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FIGWRE 12. Space-time visualizations of the longitudinal-velocity fluctuation field recorded with 
a spanwise hot-wire rake placed at y/B = 6:  (a )  x/e, = 56, A = 0.65; (a) x/O, = 452, A = 0.65; (c) 
x/’, = 1580, A = 0.65; (d) x/Oi = 2100, A = 0.41 ; (e) z/O, = 2324, A = 0.56; (f) turbulent boundary 
layer, x/O, = 1192, A = 0.65. Lateral extent of rake = 12.7 cm for (a )  and 66 cm for (b)-(j’). 

the space between vortices (spanwise distance is horizontal, time is vertical). The four 
cases correspond to the appropriate isometric visualizations in figure 12. The topology 
is even more evident here. Vortices extend across the span, but often with much 
skewness and branching (cf. vortex A in (d)). Occasionally a vortex disappears, as 
at B or C. These serious dislocations in the vortex structure are referred to as ends. 
There are several possible explanations for their presence. Although a vortex cannot 
simply end in the flow, the vorticity within the tube could become so diffuse that 
the vortex is unrecognizable. We could legitimately call this an end. Alternatively, 
the vortex may be continuous, but dip down locally, away from the plane of the probes 
-producing an apparent end. We cannot distinguish between these two circumstances, 
so our end-counting statistics will overestimate the number of true ends. However, 
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FIQURE 13. Topological plots of the longitudinal-velocity fluctuation field. Darkened regions 
correspond to passage of vortex cores (i.e. to times and positions where velocity fluctuation is 
negative). (a),  ( b ) ,  (d )  and (e) correspond to the respective parts of figure 12. Horizontal axis is 
spanwise position, vertical axis is time. Examples of vortex terminations, or ends, are observed at 
B and C.  

either situation may be regarded as a significant alteration in the regularity of the 
vortex structure. 

An algorithm was written to locate and count ends. Quite simply, any spanwise 
feature that touches both side boundaries of the array has no interior end by our 
definition. Thus there are no ends in figure 13(a), and three each in (d )  and (e). The 
method of locating ends was based upon comparing spanwise segments above the 
threshold (zero threshold in this case) at two adjoining instants in time. Overlapping 
segments, or continuations, are accounted for, as are new segments or terminated 
segments. The program made mistakes approximately 3 % of the time, but it failed 
to find an end about as often as it added an extra end. Figure 14 shows the distribution 
of ends across the span at four downstream stations for speed ratio h = 0.65. Record 
lengths corresponding to 1500-3500 passage periods were searched. The span was 
divided into 10 bins of equal size. The solid line is the spanwise mean value, and the 
dotted lines are +2a from the mean. It is concluded that the probability of finding 
an end is independent of spanwise position, with the exception of the near-wall regions 
at the two farthest downstream locations. 

The number of ends counted is now used to make an additional, independent 
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FIQURE 14. Distribution of vortex ends a a function of spanwise 
position for several downstream stations. 

estimate of the degree of organization (or lack of organization) in the mixing layer. 
For, if the flow becomes more disorganized with increasing downstream distance, one 
would expect an increase in the number of ends appearing in a given span over an 
appropriate time interval. We take a unit of span equal to the local mixing-layer 
thickness and a unit of time T = &/a. The number of ends occurring in this area 
is plotted in figure 15 for various speed ratios and various downstream positions. The 
number of ends in the space-time area S,(S,/o) does not increase, but becomes 
independent of downstream position. This again establishes a limit for the degree of 
disorganization of the large vortices. The number of ends (-0.025 in area SwSw/D) 
is sensitive to the threshold used. For higher thresholds, corresponding to a lower ratio 
of dark-to-light area in figure 13, more ends would be counted. At  lower thresholds 
the opposite would be true. This sensitivity seems unavoidable, and we have chosen 
the threshold that makes the most physical sense - the boundary between positive 
and negative signal with respect to a time-averaged mean. (This corresponds to equal 
light and dark area in figure 13.) The conclusion regarding uniformity in the 
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distribution of ends across the span, and the conclusion that the number of ends 
counted becomes independent of downstream distance, are not significantly affected 
by the threshold. 

The number of ends, once obtained, can be used to estimate an average spanwise 
length for the vortices. (This estimate was suggested to the authors by Anatol Roshko 
during an early presentation of these results.) Combining data for all speed ratios, 
the average number of ends is about 0.025. Therefore there are 

1 end in area 408,(8,/0) 

or 2 ends in area 808,(8,/e). 

From figure 6, the average time spacing of vortices is 4.36,JU. The average spanwise - - -  

length is obtained as the- estimate 

length = S08,(8,/ u, x 188,. 
4,38,/g 

This is a much better measure of the length of individual vortex structures, since it 
does not penalize irregularities along the span. Referring again to the first paragraph 
of this subsection, we note that this value must still underestimate the true length 
of vortex structures. 

4. Concluding remarks 
4.1. The transition criterion 

The measurements of spreading rate, vortex spacing and spanwise cross-correlation 
all suggest that the large vortices in the mixing layer undergo a reorganization after 
initial laminar formation, and rapidly develop a characteristic structure that is 
independent of further increase in downstream distance. The distance to establish 
this asymptotic state - the transition distance - is characterized by 

% x constant, 
*i 
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independently of Reynolds number as far as our observations can judge. This 
transition criterion has a simple physical interpretation. It implies that asymptotic 
structure is established after a fixed number of pairings or doublings of mixing-layer 
thickness. The thickness ST at transition is related to the initial mixing-layer 
thickness by 

where n is the number of doublings (pairings). There is some arbitrariness in the choice 
of the constant in (13), but if the spanwise correlation measurements are used the 
value is about 270. Appealing to figure 4(c) indicates that the mixing layer at trans- 
ition is about 12 times the initial thickness - giving a value for n between 3 and 4 .  

The mixing layer develops a large-scale vortex structure even when the boundary- 
layer flow is made turbulent. In  the past, laminar and turbulent initial conditions 
have often been viewed as separate circumstances. Here we emphasize the similarities 
that many of our results clearly demonstrate. Of course there are differences in the 
way the vortex structure develops initially. Our limited experiments with turbulent 
initial conditions do not allow generalizations for all speed ratios, but it is worthwhile 
summarizing the various results observed at  h = 0.65. Vortex structure must arise 
from an instability similar to the laminar instability. We might imagine a competition 
between the instability mechanism, whereby vorticity is collected and organized, and 
the diffusive spread of vorticity due to residual boundary-layer turbulence. Figure 5 
shows - in spite of the enhanced diffusion - that vortex structure appears at an 
early stage and at a non-dimensional frequency of the same order as the initial 
laminar-instability frequency. However, the lower mean growth rate for turbulent 
conditions (figure 4 c )  suggests that this vortex structure is initially weaker than the 
laminar flow structure. These initial vortices are also considerably less correlated 
across the span, as shown in figure 10. Again this is evidence of weaker structure than 
is initially present in the laminar instability. In a sense, the mixing layer that develops 
from a turbulent boundary layer begins closer to its final condition- there is no strong 
transition. 

(14) ST = 2.8,, 

4 .2 .  Permnence of structure 
The development of a large vortex structure that becomes independent of downstream 
distance is strong experimental support for the continued presence of these features. 
In fact we believe it is the most reliable quantitative evidence demonstrating the 
perseverance of vortices at large Reynolds numbers. If the structure were eventually 
to disappear, one would have to imagine transition to yet another asymptotic 
structure farther downstream. While this is possible, it seems unlikely, and there is 
presently no experimental support for such an additional transition. 

There is much other experimental evidence that supports the contention that the 
quasi-two-dimensional vortex structure described here must be the central element 
in any dynamical description of the mixing layer. Browand & Weidman (1976) 
demonstrated that vortex pairing was associated with Reynolds-stress production in 
a mixing layer at  Reynolds numbers of order lo3. The lack of effective experimental 
techniques, in the absence of applied forcing, has hampered observations at higher 
Reynolds numbers, and one must rely somewhat on circumstantial evidence. Hussain 
6 Zaman (1981) have shown that Reynolds stress favourable to the production of 
turbulence is associated with pairing in the mixing layer of an axisymmetric jet forced 
acoustically. Browand & Ho (1983) argue that interaction between large vortices 
(pairing) is the only effective means of generating the instantaneous momentum fluxes 
responsible for maintaining the energy of the turbulence. Wygnanski & Oster (1982) 
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have demonstrated that Reynolds stress, and therefore the state of the turbulence, 
can be manipulated by controlling the interactions between vortices. When pairing 
is inhibited, the Reynolds stress changes sign completely, and the turbulence loses 
energy (see also the review by Ho & Huerre 1984). Koop 6 Browand (1979) have 
observed the behaviour of the mixing layer in a stratified fluid. The vortices initially 
increase their scale by pairing, but at  a certain point the pairing is inhibited by the 
stable stratification. The large vortices are obliterated, turbulent intensity decays and 
the flow approaches a laminar state. Apparently, the self-preserving mixing layer can 
only exist if vortex interactions are occurring. 

The authors appreciate the financial support of both the Office of Naval Research, 
Fluid Dynamics and Oceanography Programs, and the National Science Foundation, 
Engineering Fluid Dynamics Program. 
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